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ABSTRACT
The proliferation of location-based services and social networks
have given rise to geosocial networks, which model not only the
social interactions between users but also their spatial activities.
Examples include traditional social networks extended with geo-
annotated posts such as Twitter and Facebook, and networks such
as Foursquare and Yelp that directly offer geosocial services. De-
spite the ubiquity of such networks in everyday life and the strong
interest by the research community, a limited number of datasets
are in fact publicly available. In view of this, we investigate the
generation of realistic geosocial networks which find application in
benchmarking and testing of analysis tasks, “what-if” scenarios and
simulations. The contributions of our work are twofold. We first
identify three types of synthetic geosocial networks which mimic
the characteristics of real ones and second, we develop a prototype
which combines graph and spatial generators, to construct such
networks.

CCS CONCEPTS
• Information systems→ Social networks; Geographic informa-
tion systems.

KEYWORDS
Geosocial network, graph, spatial data, generator
ACM Reference Format:
Abed Al Rhman Sarsour, Panagiotis Bouros, and Theodoros Chondrogiannis.
2023. Towards Generating Realistic Geosocial Networks. In 7th ACM SIGSPA-
TIAL Workshop on Location-based Recommendations, Geosocial Networks and
Geoadvertising (LocalRec ’23), November 13, 2023, Hamburg, Germany. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3615896.3628340

1 INTRODUCTION
The ubiquity of mobile location-aware devices (smart phones and
watches, tablets etc.) and the proliferation of social networks have
given rise to geosocial networks, where users not only form social
connections to each other but also perform geo-referenced actions,
e.g., posts and check-ins. Examples of such networks include tradi-
tional social networks extended with geospatial information such
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as X (formerly known as Twitter) and Facebook, and networks
directly offering geosocial services such as Yelp and Foursquare.
Research in geosocial networks has focused on query processing
[4, 10, 11, 23, 25–27] and indexing [28, 29], on the collision with Rec-
ommender systems [19, 24] and on analysis tasks such as influence
maximization [7, 20] and community search [8, 12, 13].

Despite the volume of research in geosocial networks, a limited
number of datasets are publicly available for downloading. For
example, Yelp1 offers an official dump for academic purposes, a
Brightkite and a Gowalla dump can be found in SNAP’s page2,
while a Foursquare3 dataset is available from [19, 24]. Another
option for acquiring such datasets is to use official APIs offered
by some geosocial networks, e.g., X4 and Foursquare5. However,
these APIs typically restrict the number of queries per day, and
therefore, the amount of data to retrieve; for unlimited downloads,
fees are charged. In an attempt to fill this availability gap, generated
geosocial networks can be used instead, e.g., for benchmarking the
efficiency and the robustness of geosocial queries, for hypothesis
testing, “what-if” scenarios, and simulations. For example, an exten-
sive performance comparison of the algorithms can be conducted
by studying the impact of parameters/factors such as the network
size, its topology and the distribution in space.

Existing generators. Network generation has received significant
attention in the graph literature. The goal of all proposed models is
to generate synthetic networks whose properties match the ones
observed in real networks, as well as possible. Real-world social
networks in specific, are typically characterized by a vertex-degree
distribution that follows a power law; i.e., the number of vertices
𝑐𝑘 with degree 𝑘 is given by the formula 𝑐𝑘 ∝ 𝑘−𝛾 where 𝛾 > 0 is
called the power-law exponent. In addition, social networks exhibit
a small diameter, a.k.a. the “small-world” phenomenon, or “six
degrees of separation” [22]. Specifically, a diameter 𝑑 indicates that
every pair of vertices can be connected by a path that contains
at most 𝑑 edges. In this context, the majority of proposed models
[1, 2, 16, 17, 32] involve some form of preferential attachment to
progressively construct a synthetic network. Under this, the new
vertices added are preferentially connected to existing vertices with
high degree, adopting a “rich get richer” approach. A different
family of models such as the small-world model [31] strives for
small diameter, while the Kronecker graph model [18] employs a
recursive construction to create self-similar networks, starting from
a small initial one as the basis.

1https://www.yelp.com/dataset/
2http://snap.stanford.edu/data/index.html#locnet
3https://archive.org/details/201309_foursquare_dataset_umn
4https://developer.twitter.com/en/products/twitter-api
5https://location.foursquare.com/developer/reference/places-api-overview
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Generating spatial data has been also studied in the past. Beck-
mann and Seeger presented a generator for benchmarking multi-
dimensional indices in [5], which can be used to produce spatial
points or rectangles following different distributions in space, e.g.,
uniform, clustered, diagonal etc. Recently, this generator was fur-
ther extended in [30] and the Spider Web-based interface6 was
presented in [15].

Contributions. Despite the efforts on generating social networks
and spatial data, to the best of our knowledge, the process of gen-
erating realistic geosocial networks has not be investigated. To fill
this gap, our paper first discusses three types of synthetic geosocial
networks that mimic the characteristics of real networks. Then, we
describe the process of generating such networks and discuss our
open-source prototype in Python which combines graph generators
offered by the NetworkX7 graph library with the spatial generator
in [15, 30].

2 SYNTHETIC GEOSOCIAL NETWORKS
We first introduce necessary notation and then describe three types
of realistic synthetic geosocial networks.

2.1 Notation
We model a social network as a graph 𝐺 = (𝑉 , 𝐸) where every
vertex 𝑣 ∈ 𝑉 represents an entity of the network and every edge
(𝑢, 𝑣) ∈ 𝐸 ⊆ 𝑉 × 𝑉 indicates a relationship between the entities
modelled by vertices 𝑢 and 𝑣 . The edges in 𝐸 can be either directed
or undirected depending on the application and the nature of the
modelled relationships between the graph vertices; without loss
of generality, we draw only undirected edges in the rest of the
text. A geosocial network is a social network where a vertex 𝑣 can
be associated with the geometry of an object in the two or three-
dimensional space, denoted by 𝑣 .𝑔𝑒𝑜𝑚, e.g., a point, a polygon etc.
For simplicity, we call such 𝑣 , a spatial vertex.

2.2 Types
In the first type of synthetic geosocial networks, denoted by𝐺𝑠 , all
vertices in set 𝑉 represent the same type of entities, e.g., users of
the network, and the edges in set 𝐸 model relationships between
such entities, e.g., FRIEND_OF, FOLLOWS etc. Geospatial informa-
tion assigned to (spatial) vertices stores specific location such as
a person’s workplace or residence. As an example, consider the
scenario of an academic geosocial network created based on the
co-authorship relationship. Every vertex on the network represents
a researcher and an edge is defined for each pair of researchers who
have co-authored a publication. The 𝑣 .𝑔𝑒𝑜𝑚 of a spatial vertex 𝑣

stores the coordinates for the current affiliation of the correspond-
ing researcher.8 Figure 1(a) exemplifies a type𝐺𝑠 geosocial network;
spatial vertices are marked with a red pin.

The second type of synthetic geosocial networks, denoted by𝐺𝑐 ,
models two types of entities as vertices. Intuitively, the graph of the
network contains a social core of non-spatial vertices representing
for instance network users; the edges connecting these vertices

6https://spider.cs.ucr.edu
7https://networkx.org
8It is possible that only a subset of vertices 𝑉 are spatial as information about the
affiliation of some researchers may not be available.

(a) Type 𝐺𝑠

(b) Type 𝐺𝑐

(c) Type 𝐺𝑝

Figure 1: Types of synthetic geosocial networks: non-spatial
vertices and edges in between them are drawn in black, spa-
tial vertices are marked with a red pin.

model again typical social relationships. In addition, 𝐺𝑐 contains a
set of vertices associated with geospatial information. These spatial
vertices do not represent users and they are never connected to each
other; instead, they are always connected to one or more vertices of
the social core. As an example of the 𝐺𝑐 type, consider Foursquare.
The social core of its network graph represents registered users
who are connected to each other via the FRIEND_OF relationship.
The graph also contains a set of spatial vertices modelling the loca-
tion of venues, businesses, attractions and other points of interest.
Every such spatial vertex is connected to one or more non-spatial
vertices via a CHECK_IN relationship, to indicate the users having
visited the corresponding location. Figure 1(b) shows an example
of a 𝐺𝑐 network, inspired by Foursquare. Notice the social core of
the network drawn in black color, which includes the non-spatial
vertices, representing users, and the edges between them, capturing
friendship relationships. On the other hand, the spatial vertices,
drawn in green, model attractions; specifically, two restaurants and
a theatre house. Last, the gray edges model the CHECK_IN activity

https://spider.cs.ucr.edu
https://networkx.org
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of the users to these attractions; as expected, a location can be
visited by multiple users.

The third type of synthetic geosocial networks, denoted by 𝐺𝑝 ,
also models two types of entities. Similar to 𝐺𝑐 , the network con-
tains a social core of non-spatial vertices with typical social re-
lationships. However, every spatial vertex in set 𝑉 is exclusively
connected to a single non-spatial vertex. As an example, consider
X or Facebook. Non-spatial vertices represent registered users, con-
nected via a FOLLOW or a FRIEND_OF relationship, respectively.
Spatial vertices on the other hand, represent geo-annotated posts
(namely, tweets in case of X); this geospatial information can be
either explicitly provided by users via a mobile application on their
smartphone or even automatically extracted from the text through
a process known as geo-tagging [3, 9, 21]. Figure 1(c) exemplifies
type 𝐺𝑝 geosocial networks. We observe similar to the 𝐺𝑐 case,
the social core of the network, drawn in black. The spatial vertices
drawn in blue, represent geo-annotated tweets. However, this time,
every spatial vertex is always connected to exactly one user ver-
tex, i.e., the author of the corresponding post. Naturally, as users
can post multiple geo-annotated posts, a non-spatial vertex can be
connected to multiple spatial ones.

3 GENERATION PROCESS
We next elaborate on the process of generating realistic synthetic
geosocial networks and discuss our prototype generator.9

3.1 Overview
Figure 2 illustrates the generation process. Essentially, the pro-
cess comprises two phases. First, a graph and a spatial generator
are independently employed to create a synthetic social network
and a collection of geospatial objects, respectively. In the second
phase, these intermediate datasets are then combined to construct a
geosocial network. A combiner is defined for each type of synthetic
geosocial network, i.e., 𝐺𝑠 , 𝐺𝑐 and 𝐺𝑝 .

We developed a prototype in Python that implements the above
generation process. The system is designed with modularity and
extensibility in mind. The output datasets of the generators in Fig-
ure 2 are stored inside a .gr file (for the graph of the social network)
and a .co file (for the geospatial data), which are then scanned
by one of the combiners to produce the final geosocial network
(also outputted inside a .gr and a .co file). This design enables us to
consider different models, implementations and libraries for each
component without the need to reimplement the entire workflow,
as long as the output files of the generators comply with the .gr and
9Code for our generator can be found in https://github.com/pbour/geosocialgenerator.

.co format. In addition, it is also possible for the user to provide an
existing (potentially real) social network graph and/or a collection
of spatial objects as input(s) instead of using the generators, and
then directly employ one of the combiners to construct the final
geosocial network.

Without loss of generality, our prototype currently uses the
NetworkX graph library (also in Python) to generate the graph of a
social network. Specifically, we use:

• the barabasi_albert_graph function which constructs ran-
dom graphs according to the preferential attachment model
in [1],

• the scale_free_graph function which constructs scale-free
graphs according to the model proposed in [6], and

• the powerlaw_cluster_graph functionwhich constructs graphs
according to the model in [14], with power law degree dis-
tribution and approximate average clustering

For generating geospatial data, we use the generator from [15, 30],
which is also implemented in Python.10

3.2 Implementation
Last, we discuss the implementation of our prototype. For simplicity,
we focus on the case when both the social graph and the geospatial
data are generated during the first phase, and not uploaded by the
user. The system receives as input the number of vertices of the so-
cial network graph and the number of geometries, which also equals
the number of spatial vertices to be created in the output geosocial
graph. The remaining parameters for the first phase depend on the
model to used by the graph generator and on the distribution and
the geometry type for the spatial generator; both are specified by
the user.11 Depending on the graph generation model, the user can
request a directed or an undirected social network graph.

We next elaborate on the combiners. All three receive as inputs
a .gr file which contains the generated social graph and a .co file,
which contains the geometries for the spatial vertices. Type 𝐺𝑐

and 𝐺𝑝 require extra inputs which we will discuss in the following.
We start with the 𝐺𝑠 combiner, which is the simplest of the three.
Essentially, the output geosocial network contains exactly the same
vertices and edges as the generated social graph in the previous
phase. Hence, the combiner randomly selects a subset of the social
vertices to become spatial, by assigning them a geometry from the
.co file. These vertex-to-geometry assignments are stored in the
output .co file. Note that the output .gr file is identical to the input.

Unlike𝐺𝑠 , the𝐺𝑐 and𝐺𝑝 combiners will extend the set of vertices
and edges of the network graph. Both will create and add new
vertices, one for each geometry found in the input .co file, and new
edges to connect these spatial vertices to the social ones found in
the input .gr file. The key difference between the two combiners
lies on how these new edges are created. The 𝐺𝑐 combiner will
connect every created spatial vertex to one or more social. We
assume that the number of edges created for each spatial vertex
follows a normal distribution; the user can specify the mean value

10Code available in https://github.com/aseldawy/spider and
https://github.com/tinvukhac/spatialdatagenerators
11For more information about the input parameters in each case, please refer to
NetworkX documentation https://networkx.org/documentation/stable/ and the
https://github.com/aseldawy/spider, https://github.com/tinvukhac/spatialdatagenerators
repositories.
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and standard deviation for the distribution. In contrast, the 𝐺𝑝

combiner will connect every created spatial vertex to exactly one
social. In this case, we consider a normal distribution for the number
of edges towards spatial vertices, every social vertex can have; for
example, the number of posts a user made in the network. The
parameters for the distribution can also be provided by the user.

4 CONCLUSIONS
In this paper, we studied the generation of realistic geosocial net-
works. We described three types of synthetic networks and pre-
sented a prototype for the generation process. Our prototype cap-
italizes on the NetworkX graph library to generate the network
graph and on a spatial data generator.

In the future, we plan to extend our work towards multiple
directions. First, we will investigate additional types of synthetic
geosocial networks, able to cover more application scenarios. We
will also study how realistic are the generated networks. For this
purpose, similarity measures for comparing generated networks to
a repository of existing real geosocial networks can be employed.
Further, we plan to include more models for generating the social
network graph and to offer more features for the graph edges, e.g.,
supporting multiple types of relationships via labeling, and weights
to capture the strength of a relationship Finally, we also intend
to develop an interactive Web-based user interface, able to both
generate and visualize geosocial networks.
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